Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675878

RESUMO

Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs.


Assuntos
Coronavirus , Sensibilidade e Especificidade , Humanos , Animais , Coronavirus/genética , Coronavirus/classificação , Coronavirus/isolamento & purificação , Águas Residuárias/virologia , Quirópteros/virologia , Aves/virologia , Reação em Cadeia da Polimerase/métodos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/diagnóstico
3.
Nat Commun ; 12(1): 972, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563978

RESUMO

Among the many questions unanswered for the COVID-19 pandemic are the origin of SARS-CoV-2 and the potential role of intermediate animal host(s) in the early animal-to-human transmission. The discovery of RaTG13 bat coronavirus in China suggested a high probability of a bat origin. Here we report molecular and serological evidence of SARS-CoV-2 related coronaviruses (SC2r-CoVs) actively circulating in bats in Southeast Asia. Whole genome sequences were obtained from five independent bats (Rhinolophus acuminatus) in a Thai cave yielding a single isolate (named RacCS203) which is most related to the RmYN02 isolate found in Rhinolophus malayanus in Yunnan, China. SARS-CoV-2 neutralizing antibodies were also detected in bats of the same colony and in a pangolin at a wildlife checkpoint in Southern Thailand. Antisera raised against the receptor binding domain (RBD) of RmYN02 was able to cross-neutralize SARS-CoV-2 despite the fact that the RBD of RacCS203 or RmYN02 failed to bind ACE2. Although the origin of the virus remains unresolved, our study extended the geographic distribution of genetically diverse SC2r-CoVs from Japan and China to Thailand over a 4800-km range. Cross-border surveillance is urgently needed to find the immediate progenitor virus of SARS-CoV-2.


Assuntos
Quirópteros/virologia , Pangolins/virologia , SARS-CoV-2/fisiologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/sangue , Sudeste Asiático , COVID-19/virologia , Quirópteros/sangue , Geografia , Testes de Neutralização , Filogenia , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
5.
Virol J ; 12: 57, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25884446

RESUMO

BACKGROUND: Bats are reservoirs for a diverse range of coronaviruses (CoVs), including those closely related to human pathogens such as Severe Acute Respiratory Syndrome (SARS) CoV and Middle East Respiratory Syndrome CoV. There are approximately 139 bat species reported to date in Thailand, of which two are endemic species. Due to the zoonotic potential of CoVs, standardized surveillance efforts to characterize viral diversity in wildlife are imperative. FINDINGS: A total of 626 bats from 19 different bat species were individually sampled from 5 provinces in Eastern Thailand between 2008 and 2013 (84 fecal and 542 rectal swabs). Samples collected (either fresh feces or rectal swabs) were placed directly into RNA stabilization reagent, transported on ice within 24 hours and preserved at -80°C until further analysis. CoV RNA was detected in 47 specimens (7.6%), from 13 different bat species, using broadly reactive consensus PCR primers targeting the RNA-Dependent RNA Polymerase gene designed to detect all CoVs. Thirty seven alphacoronaviruses, nine lineage D betacoronaviruses, and one lineage B betacoronavirus (SARS-CoV related) were identified. Six new bat CoV reservoirs were identified in our study, namely Cynopterus sphinx, Taphozous melanopogon, Hipposideros lekaguli, Rhinolophus shameli, Scotophilus heathii and Megaderma lyra. CONCLUSIONS: CoVs from the same genetic lineage were found in different bat species roosting in similar or different locations. These data suggest that bat CoV lineages are not strictly concordant with their hosts. Our phylogenetic data indicates high diversity and a complex ecology of CoVs in bats sampled from specific areas in eastern regions of Thailand. Further characterization of additional CoV genes may be useful to better describe the CoV divergence.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Coronavirus/isolamento & purificação , Variação Genética , Animais , Coronavirus/classificação , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Dados de Sequência Molecular , Filogenia , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...